题目内容
【题目】如图,在长方形ABCD中,放入6个形状和大小都相同的小长方形后,还有一部分空余(阴影部分),已知小长方形的长为a,宽为b,且a>b.
(1)用含a、b的代数式表示长方形ABCD的长AD和宽AB.
(2)用含a、b的代数式表示阴影部分的面积(列式表示即可,不要求化简).
(3)若a=7cm,b=2cm,求阴影部分的面积.
【答案】(1) AD=a+2b,AB=a+b;(2)a2﹣3ab+2b2;(3)15.
【解析】
(1)如图所示,AD=a+b+b=a+2b,CD=a+b,即为长方形的长与宽;
(2)阴影部分的面积=长方形ABCD的面积-6个小长方形的面积,利用长方形的面积公式表示出阴影部分的面积即可;
(3)把a,b的值代入(2)中的代数式求解即可.
解:(1)由图形得:AD=a+2b,AB=a+b;
(2)S阴影=(a+b)(a+2b)﹣6ab
=a2+2ab+ab+2b2﹣6ab
=a2﹣3ab+2b2;
(3)把a=7cm,b=2cm代入,得
S阴影=72﹣3×7×2+2×22=15.
练习册系列答案
相关题目
【题目】某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行整理如下:
月均用水量x(t) | 频数(户) | 频率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
2 | 0.04 |
请解答下列问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?