题目内容
【题目】如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.若BF=12,AB=10,则AE的长为( )
A. 10 B. 12 C. 16 D. 18
【答案】C
【解析】
先证明四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长
如图,
∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠DAE=∠AEB,
∵∠BAD的平分线交BC于点E,
∴∠DAE=∠BEA,
∴∠BAE=∠BEA,
∴AB=BE,同理可得AB=AF,
∴AF=BE,
∴四边形ABEF是平行四边形,
∵AB=AF,
∴四边形ABEF是菱形,
AE⊥BF,OA=OE,OB=OF=BF=6,
∴OA==8,
∴AE=2OA=16;
故选:C.
练习册系列答案
相关题目
【题目】某水果店用500元购进甲、乙两种水果共50kg,这两种水果的进价、售价如下表所示
品名 | 甲种 | 乙种 |
进价元 | 7 | 12 |
售价元 | 10 | 16 |
求这两种水果各购进多少千克?
如果这批水果当天售完,水果店除进货成本外,还需其它成本元,那么水果店销售完这批水果获得的利润是多少元?(利润售价成本)