题目内容
【题目】甲、乙两车间同时开始加工一批服装.从开始加工到加工完这批服装甲车间工作了9小时,乙车间在中途停工一段时间维修设备,然后按停工前的工作效率继续加工,直到与甲车间同时完成这批服装的加工任务为止.设甲、乙两车间各自加工服装的数量为y(件).甲车间加工的时间为x(时),y与x之间的函数图象如图所示.
(1)甲车间每小时加工服装件数为 件;这批服装的总件数为 件;
(2)求乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式,并写出自变量的取值范围;
(3)求甲、乙两车间共同加工完1000件服装时甲车间所用的时间.
【答案】(1)80;1140.(2)y=60x﹣120(4≤x≤9);(3)甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.
【解析】试题分析:(1)根据工作效率=工作问题÷工作时间,即可求出甲车间每小时加工服装件数,再根据这批服装的总件数=甲车间加式的件数+乙车间加工的件数,即可得这批服装的总件数;
(2)根据工作效率=工作总量÷工作时间,即可求出乙车间每小量加工服装件数,根据工作时间=工作总量÷工作效率,结合工作结束时间即可求出乙车间修好设备的时间,再根据加工的服装总件数=120+工作效率×工作时间,即可求出乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式;
(3)根据加工的服装总件数=工作效率×工作时间,求出甲车间加工服装数量y与x之间的函数关系式,将甲、乙两关系式相加,令其等于1000,即可得解.
试题解析:(1)甲车间每小时加工服装件数为720÷9=80(件),
这批服装的总件数为720+420=1140(件),
故答案为:80;1140.
(2)乙车间每小时加工服装件数为120÷2=60(件),乙车间修好设备的时间为9﹣(420﹣120)÷60=4(时).
∴乙车间维修设备后,乙车间加工服装数量y与x之间的函数关系式为
y=120+60(x﹣4)=60x﹣120(4≤x≤9);
(3)甲车间加工服装数量y与x之间的函数关系式为y=80x,
当80x+60x﹣120=1000时, x=8,
答:甲、乙两车间共同加工完1000件服装时甲车间所用的时间为8小时.
【题目】学校冬季趣味运动会开设了“抢收抢种”项目,八(5)班甲、乙两个小组都想代表班级参赛,为了选择一个比较好的队伍,八(5)班的班委组织了一次选拔赛,甲、乙两组各10人的比赛成绩如下表:
甲组 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
乙组 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
(1)甲组成绩的中位数是 分,乙组成绩的众数是 分.
(2)计算乙组的平均成绩和方差.
(3)已知甲组成绩的方差是1.4,则选择 组代表八(5)班参加学校比赛.