题目内容
【题目】如图,正方形ABCD中,AB=4,P是CD边上的动点(P点不与C、D重合),过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1 ,△PDE的面积为S2 .
(1)求证:BP⊥DE.
(2)求S1﹣S2关于x的函数解析式,并写出x的取值范围.
(3)分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.
【答案】(1)证明见解析;(2)S1﹣S2= x2(0<x<4);(3)①当∠PBF=30°时,S1﹣S2=;②当∠PBF=45°时,S1﹣S2=.
【解析】试题分析:(1)首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;
(2)根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;
(3)分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用(2)中结论进行计算即可.
试题解析:(1)如图1中,延长BP交DE于M,
∵四边形ABCD是正方形,
∴CB=CD,∠BCP=∠DCE=90°,
∵CP=CE,
∴△BCP≌△DCE,
∴∠BCP=∠CDE,
∵∠CBP+∠CPB=90°,∠CPB=∠DPM,
∴∠CDE+∠DPM=90°,
∴∠DMP=90°,
∴BP⊥DE;
(2)由题意S1﹣S2=(4+x)x﹣ (4﹣x)x=x2(0<x<4);
(3)①如图2中,当∠PBF=30°时,
∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,
∴∠PFD=∠DPF=45°,
∴DF=DP,∵AD=CD,
∴AF=PC,∵AB=BC,∠A=∠BCP=90°,
∴△BAF≌△BCP,
∴∠ABF=∠CBP=30°,
∴x=PC=BCtan30°=,
∴S1﹣S2=x2=;
②如图3中,当∠PBF=45°时,在CB上截取CN=CP,连接PN,
由①可知△ABF≌△BCP,
∴∠ABF=∠CBP,
∵∠PBF=45°,
∴∠CBP=22.5°,
∵∠CNP=∠NBP+∠NPB=45°,
∴∠NBP=∠NPB=22.5°,
∴BN=PN=x,
∴x+x=4,
∴x=4 ﹣4,
∴S1﹣S2=(4 ﹣4)2=48﹣32 .