题目内容
【题目】如图,已知直线y=kx+6与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.
(1)求抛物线的解析式;
(2)在(1)中抛物线的第三象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
【答案】(1)y=﹣x2+2x+3;(2)存在,;(3)①;②Q点坐标为(0,)或(0, )或(0,1)或(0,3).
【解析】
(1)用待定系数法求解析式;(2)作PM⊥x轴于M,作PN⊥y轴于N,当∠POB=∠POC时,△POB≌△POC,设P(m,m),则m=﹣m2+2m+3,可求m;(3)分类讨论:①如图,当∠Q1AB=90°时,作AE⊥y轴于E,证△DAQ1∽△DOB,得,即;②当∠Q2BA=90°时,∠DBO+∠OBQ2=∠OBQ2+∠O Q2B=90°,证△BOQ2∽△DOB,得,;③当∠AQ3B=90°时,∠AEQ3=∠BOQ3=90°,证△BOQ3∽△Q3EA,,即;
解:(1)把A(1,4)代入y=kx+6,
∴k=﹣2,
∴y=﹣2x+6,
由y=﹣2x+6=0,得x=3
∴B(3,0).
∵A为顶点
∴设抛物线的解析为y=a(x﹣1)2+4,
∴a=﹣1,
∴y=﹣(x﹣1)2+4=﹣x2+2x+3
(2)存在.
当x=0时y=﹣x2+2x+3=3,
∴C(0,3)
∵OB=OC=3,OP=OP,
∴当∠POB=∠POC时,△POB≌△POC,
作PM⊥x轴于M,作PN⊥y轴于N,
∴∠POM=∠PON=45°.
∴PM=PN
∴设P(m,m),则m=﹣m2+2m+3,
∴m=,
∵点P在第三象限,
∴P(,).
(3)①如图,当∠Q1AB=90°时,作AE⊥y轴于E,
∴E(0,4)
∵∠DA Q1=∠DOB=90°,∠AD Q1=∠BDO
∴△DAQ1∽△DOB,
∴,即,
∴DQ1=,
∴OQ1=,
∴Q1(0,);
②如图,
当∠Q2BA=90°时,∠DBO+∠OBQ2=∠OBQ2+∠O Q2B=90°
∴∠DBO=∠O Q2B
∵∠DOB=∠B O Q2=90°
∴△BOQ2∽△DOB,
∴,
∴,
∴OQ2=,
∴Q2(0,);
③如图,当∠AQ3B=90°时,∠AEQ3=∠BOQ3=90°,
∴∠AQ3E+∠E AQ3=∠AQ3E+∠B Q3O=90°
∴∠E AQ3=∠B Q3O
∴△BOQ3∽△Q3EA,
∴,即,
∴OQ32﹣4OQ3+3=0,
∴OQ3=1或3,
∴Q3(0,1)或(0,3).
综上,Q点坐标为(0,)或(0,)或(0,1)或(0,3).
【题目】二次函数y=ax2+bx+c(a,b,c 为常数,且a≠0)的图像上部分点的横坐标x和纵
坐标y的对应值如下表
x | … | -1 | 0 | 1 | 2 | 3 | … |
y | … | -3 | -3 | -1 | 3 | 9 | … |
关于x的方程ax2+bx+c=0一个负数解x1满足k<x1<k+1(k为整数),则k=________.
【题目】阅读材料:
工厂加工某种新型材料,首先要将材料进行加温处理,使这种材料保持在一定的温度范围内方可进行继续加工处理这种材料时,材料温度是时间的函数下面是小明同学研究该函数的过程,把它补充完整:
在这个函数关系中,自变量x的取值范围是______.
如表记录了17min内10个时间点材料温度y随时间x变化的情况:
时间 | 0 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | |
温度 | 15 | 24 | 42 | 60 | m |
上表中m的值为______.
如图,在平面直角坐标系xOy中,已经描出了上表中的部分点根据描出的点,画出该函数的图象.
根据列出的表格和所画的函数图象,可以得到,当时,y与x之间的函数表达式为______,当时,y与x之间的函数表达式为______.
根据工艺的要求,当材料的温度不低于时,方可以进行产品加工,在图中所示的温度变化过程中,可以进行加工的时间长度为______min.