题目内容

【题目】如图①,△ABC中,∠B、∠C平分线交于O点,过O点作EFBCABACEF.

1)猜想:EFBECF之间有怎样的关系并说明理由

2)如图②,若△ABC中∠B的平分线BE与三角形外角∠ACD平分线CE交于E,且AEBC,AE=13BC=24.求四边形ABCE周长和面积.

【答案】(1) EF=BE+CF,理由见解析;(2)周长50+ ;面积为92.5.

【解析】

(1)BO平分∠ABC,∠OBE=∠OBC,再根据EF∥BC,说明∠OBC=∠EOB.得到∠EOB=∠OBE,得到BE=OE;同理:OF=FC;可得EF=BE+FC;

解:(1EF=BE+CF,理由如下:

BO平分∠ABC,

∠OBE=∠OBC

又∵EF∥BC

∴∠OBC=∠EOB.

∴∠EOB=∠OBE

∴BE=OE;

同理:OF=FC;

∴EF=OE+OF=BE+FC

(2)

分别过A,C作HA⊥BC,CG⊥AE

BE平分∠ABC,

∠ABE=∠EBC

又∵AE∥BC

∴∠AEB=∠EBC.

∴∠AEB=∠ABE

∴AB=AE=13;

同理:AE=AC=13

∵AE=AC=13,AH⊥BC,BC=24

∴BH=HC=BC=12

∴AH=

∵AE∥BC,AH∥CG

∴四边形AHCG是平行四边形

∴AG=HC=12,CG=AH=5

∴GF=AE-AG=1

∴CE=

∴四边形ABCE的周长为:AB+AE+BC+CE=13+13+24+=50+

四边形ABCE的面积为: =92.5.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网