题目内容
【题目】如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的直角三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
(1)在图1中,DE交边AB于M,DF交边BC于N,证明:DM=DN;
(2)在这一旋转过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;
(3)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
【答案】(1)详情见解析;(2)四边形DMBN面积不发生变化,面积为;(3)仍然成立,证明见解析.
【解析】
(1)连接BD,求出BD=DC,∠MDB=∠CDN,∠C=∠ABD,根据ASA证明△MBD≌△NCD,进而求证即可;
(2)根据全等得出△MBD与△NCD面积相等,求出四边形DMBN的面积等于△BDC的面积,进而求解即可;
(3)连接BD,求出BD=DC,∠MDB=∠CDN,∠C=∠ABD,根据ASA证明△MBD≌△NCD,进而求证即可.
(1)如图1,连接BD.
∵在Rt△ABC中,AB=BC,AD=DC,
∴BD=DC=AD,∠BDC=90°,
∴∠ABD=∠C=45°,
∵∠MDB+∠BDN=90°,∠CDN+∠BDN=90°
∴∠MDB=∠NDC,
在△MBD与△NCD中,
∵∠MDB=∠NDC,BD=DC,∠MBD=∠C,
∴△MBD≌△NCD,
∴DM=DN.
(2)四边形DMBN面积不发生变化.
由(1)得△MBD≌△NCD,
∴S△MBD=S△NCD,
∴四边形DMBN面积=S△DMB+S△BDN= S△CND+ S△BDN=S△ABC=.
(3)DM=DN仍然成立.
如图2,连接BD,
∵在Rt△ABC中,AB=BC,AD=DC,
∴DB=DC,∠BDC=90°,
∴∠DCB=∠DBC=45°,
∴∠DBM=∠DCN=135°,
∵∠NDC+∠CDM=90°,∠BDM+∠CDM=90°,
∴∠CDN=∠BDM,
在△CDN与△BDM中,
∵∠CDN=∠BDM,DC=DB,∠DCN=∠DBM,
∴△CDN≌△BDM,
∴DM=DN.