题目内容
【题目】如图,在长方形ABCD中,边AB、BC的长(AB<BC)是方程x2﹣7x+12=0的两个根.点P从点A出发,以每秒1个单位的速度沿△ABC边 A→B→C→A的方向运动,运动时间为t(秒).
(1)求AB与BC的长;
(2)当点P运动到边BC上时,试求出使AP长为时运动时间t的值;
(3)当点P运动到边AC上时,是否存在点P,使△CDP是等腰三角形?若存在,请求出运动时间t的值;若不存在,请说明理由.
【答案】(1) AB=3,BC=4;(2) t=4;(3) t为10秒或9.5秒或秒时,△CDP是等腰三角形.
【解析】试题分析:(1)解一元二次方程即可求得边长;
(2)结合图形,利用勾股定理求解即可;
(3)根据题意,分为:PC=PD,PD=PC,PD=CD,三种情况分别可求解.
试题解析:(1)∵x2-7x+12=(x-3)(x-4)=0
∴=3或=4 .
则AB=3,BC=4
(2)由题意得
∴, (舍去)
则t=4时,AP=.
(3)存在点P,使△CDP是等腰三角形.
①当PC=PD=3时, t= =10(秒).
②当PD=PC(即P为对角线AC中点)时,AB=3,BC=4.
∴AC= =5,CP1= AC=2.5
∴t= =9.5(秒)
③当PD=CD=3时,作DQ⊥AC于Q. ,
∴PC=2PQ=
∴ (秒)
可知当t为10秒或9.5秒或秒时,△CDP是等腰三角形.
【题目】我市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时.该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出如图所示的频数分布表和频数分布直方图的一部分.
时间/时 | 频数 | 百分比 |
0≤t<0.5 | 4 | 0.1 |
0.5≤t<1 | a | 0.3 |
1≤t<1.5 | 10 | 0.25 |
1.5≤t<2 | 8 | b |
2≤t<2.5 | 6 | 0.15 |
合计 | 1 |
(1)求表中a,b的值;
(2)补全频数分布直方图;
(3)请你估算该校1400名初中学生中,约有多少名学生在1.5小时以内完成了家庭作业.