题目内容
【题目】如图,在正方形ABCD中,E是对角线BD上一点,且满足BE=BC.连接CE并延长交AD于点F,连接AE,过B点作BG⊥AE于点G,延长BG交AD于点H.在下列结论中:
①AH=DF; ②∠AEF=45°; ③S四边形EFHG=S△DEF+S△AGH,
其中正确的结论有_____________________.(填正确的序号)
【答案】①②
【解析】∵BD是正方形ABCD的对角线,
∴∠ABE=∠ADE=∠CDE=45,AB=BC,
∵BE=BC,
∴AB=BE,
∵BG⊥AE,
∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5,
在Rt△ABH中,∠AHB=90∠ABH=67.5,
∵∠AGH=90,
∴∠DAE=∠ABH=22.5,
在△ADE和△CDE中, ,
∴△ADE≌△CDE,
∴∠DAE=∠DCE=22.5,
∴∠ABH=∠DCF,
在Rt△ABH和Rt△DCF中, ,
∴Rt△ABH≌Rt△DCF,
∴AH=DF,∠CFD=∠AHB=67.5,
∵∠CFD=∠EAF+∠AEF,
∴67.5=22.5+∠AEF,
∴∠AEF=45,故①②正确;
如图,连接HE,
∵BH是AE垂直平分线,
∴AG=EG
∴S△AGH=S△HEG,
∵AH=HE,
∴∠AHG=∠EHG=67.5,
∴∠DHE=45,
∵∠ADE=45,
∴∠DEH=90,∠DHE=∠HDE=45,
∴EH=ED,
∴△DEH是等腰直角三角形,
∵EF不垂直DH,
∴FH≠FD,
∴S△EFH≠S△EFD,
∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,
∴正确的是①②.
练习册系列答案
相关题目