题目内容
【题目】如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.
(1)求证:PD2=PEPF;
(2)当∠BOP=30°,P点为OB的中点时,求D、E、F、P四个点的坐标及S△DEF.
【答案】(1)详见解析;(2)D(﹣a, a),E(﹣a, a),F(﹣a,0),P(﹣a, );S△DEF=a2.
【解析】试题分析:(1)连接PB,OP,利用AB切⊙O1于B求证△PBE∽△POD,得出,同理,△OPF∽△BPD,得出,然后利用等量代换即可.
(2)连接O1B,O1P,得出△O1BP和△O1PO为等边三角形,根据直角三角形的性质即可解得D、E、F、P四个点的坐标.再利用三角形的面积公式可直接求出三角形DEF的面积.
试题解析:(1)证明:连接PB,OP,
∵PE⊥AB,PD⊥OB,
∴∠BEP=∠PDO=90°,
∵AB切⊙O1于B,∠ABP=∠BOP,
∴△PBE∽△POD,
∴=,
同理,△OPF∽△BPD
∴=,
∴=,
∴PD2=PEPF;
(2)连接O1B,O1P,
∵AB切⊙O1于B,∠POB=30°,
∴∠ABP=30°,
∴∠O1BP=90°﹣30°=60°,
∵O1B=O1P,
∴△O1BP为等边三角形,
∴O1B=BP,
∵P为弧BO的中点,
∴BP=OP,
即△O1PO为等边三角形,
∴O1P=OP=a,
∴∠1OP=60°,
又∵P为弧BO的中点,
∴O1P⊥OB,
在△O1DO中,∵∠O1OP=60°O1O=a,
∴O1D=a,OD=a,
过D作DM⊥OO1于M,∴DM=OD=a,
OM=DM=a,
∴D(﹣a, a),
∵∠O1OF=90°,∠O1OP=60°
∴∠POF=30°,
∵PE⊥OA,
∴PF=OP=a,OF=a,
∴P(﹣a,),F(﹣a,0),
∵AB切⊙O1于B,∠POB=30°,
∴∠ABP=∠BOP=30°,
∵PE⊥AB,PB=a,
∴∠EPB=60°
∴PE=a,BE=a,
∵P为弧BO的中点,
∴BP=PO,
∴∠PBO=∠BOP=30°,
∴∠BPO=120°,
∴∠BPE+∠BPO=120°+60°=180°,
即OPE三点共线,
∵OE=a+a=a,
过E作EM⊥x轴于M,∵AO切⊙O1于O,
∴∠EOA=30°,
∴EM=OE=a,OM=a,
∴E(﹣a, a),
∵E(﹣a, a),D(﹣a, a),
∴DE=﹣a﹣(﹣a)=a,
DE边上的高为: a,
∴S△DEF=×a×a=a2.
故答案为:D(﹣a, a),E(﹣a, a),F(﹣a,0),P(﹣a,);S△DEF=a2.