题目内容
【题目】如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x袖于点M , 交y轴于点N , 再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P . 若点P的坐标为(2a , b+1),则a与b的数量关系为( )
A.a-b
B.2a+b=-1
C.2a-b=l
D.2a+b=l
【答案】B
【解析】 根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,
故2a+b+1=0,
整理得:2a+b=-1
选:B.
根据作图过程可得P在第二象限角平分线上,由角平分线的性质:角的平分线上的点到角的两边的距离相等可得|2a|=|b+1|,再根据P点所在象限可得横纵坐标的和为0,进而得到a与b的数量关系
练习册系列答案
相关题目