题目内容
【题目】AB为⊙O的直径,点C、D在⊙O上.若∠ABD=42°,则∠BCD的度数是( )
A.122°
B.128°
C.132°
D.138°
【答案】C
【解析】解:连接AD,
∵AB为⊙O的直径,
∴∠ADB=90°,
∵∠ABD=42°,
∴∠A=90°﹣∠ABD=48°,
∴∠BCD=180°﹣∠A=132°.
所以答案是:C.
【考点精析】解答此题的关键在于理解圆周角定理的相关知识,掌握顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半,以及对圆内接四边形的性质的理解,了解把圆分成n(n≥3):1、依次连结各分点所得的多边形是这个圆的内接正n边形2、经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形.
练习册系列答案
相关题目