题目内容
【题目】如图,已知△ABC为等边三角形,点D、E分别在BC、AC边上,且AE=CD,AD与BE相交于点F.
(1)求证:△ABE≌△CAD;
(2)求∠AFE的度数.
【答案】(1)证明详见解析;(2)60°.
【解析】
试题分析:(1)根据等边三角形的性质可得,∠BAC=∠C=60°,AB=CA,然后利用“边角边”证明△ABE和△CAD全等;
(2)根据全等三角形对应角相等可得∠ABE=∠CAD,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式整理得到∠AFE=∠BAC.
试题解析:∵△ABC为等边三角形,
∴∠BAC=∠C=60°,AB=CA,
即∠BAE=∠C=60°,
在△ABE和△CAD中,
AB=CA,∠BAC=∠C,AE=CD,
∴△ABE≌△CAD(SAS);
(2)解:∵△ABE≌△CAD,
∴∠ABE=∠CAD,
∴∠AFE=∠ABE+∠BAD=∠CAD+∠BAD=∠BAC=60°.
练习册系列答案
相关题目