题目内容
【题目】为全面改善公园环境,现招标建设某全长960米绿化带,A,B两个工程队的竞标,A队平均每天绿化长度是B队的2倍,若由一个工程队单独完成绿装化,B队比A队要多用6天.
(1)分别求出A,B两队平均每天绿化长度.
(2)若决定由两个工程队共同合作绿化,要求至多4天完成绿化任务,两队都按(1)中的工作效率绿化完2天时,现又多出180米需要绿化,为了不超过4天时限,两队决定从第3天开始,各自都提高工作效率,且A队平均每天绿化长度仍是B队的2倍,则B队提高工作效率后平均每天至少绿化多少米?
【答案】(1)A队平均每天绿化160米,B队平均每天绿化80米;(2)110米
【解析】
(1)设B队平均每天绿化长度是x米,则A队平均每天绿化长度是2x米,依据由一个工程队单独完成绿化,B队比A队要多用6天,列分式方程求解即可;
(2)设B队提高工作效率后平均每天至少绿化y米,则A队平均每天绿化长度是2y米,依据后3天完成的绿化不少于(960+180)米,列不等式求解即可.
解:(1)设B队平均每天绿化x米,则A队平均每天绿化2x米.
依题意,得: ,
解得:x=80,
经检验,x=80是原方程的解,且符合题意,
∴2x=160.
答:A队平均每天绿化160米,B队平均每天绿化80米.
(2)设B队提高工作效率后平均每天绿化y米,则A队提高工作效率后平均每天绿化2y米,
依题意,得:(160+80)×2+(2y+y)×(4﹣2)≥960+180,
解得:y≥110.
答:B队提高工作效率后平均每天至少绿化110米.
练习册系列答案
相关题目