题目内容
【题目】如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.
(1)求直线AC的解析式.
(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)抛物线y=-x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE折叠后点O落在边AB上O/处?
【答案】解:(1)OA=1,OC=2
则A点坐标为(0,1),C点坐标为(2,0)
设直线AC的解析式为y=kx+b
解得
直线AC的解析式为
(2)或
(3)如图,设
过点作于F
由折叠知
或2
【解析】略
练习册系列答案
相关题目