题目内容
【题目】二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:
①abc>0;②3a+c<0;③a+b≥am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.
其中正确的有( )个.
A. 2 B. 3 C. 4 D. 5
【答案】B
【解析】
由抛物线开口方向得到a<0,利用抛物线的对称轴方程得到b=-2a>0,由抛物线与x轴的交点位置得到c>0,则可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在(-1,0)与(0,0)之间,所以当x=-1时,a-b+c<0,则可对④进行判断;把b=-2a代入可对②进行判断;利用二次函数的最值问题对③进行判断;把ax12+bx1=ax22+bx2进行变形得到(x1-x2)[a(x1+x2)+b]=0,从而得到a(x1+x2)+b=0,再利用b=-2a可对⑤进行判断.
∵抛物线开口向下,
∴a<0,
∵抛物线的对称轴为直线x=-=1,
∴b=-2a>0,
∵抛物线与x轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵抛物线与x轴的一个交点在(2,0)与(3,0)之间,
∴抛物线与x轴的另一个交点在(-1,0)与(0,0)之间,
∴当x=-1时,y<0,
即a-b+c<0,所以④错误;
∴a+2a+c<0,即3a+c<0,所以②正确;
∵x=1时,y有最大值,
∴a+b+c≥am2+bm+c,
即a+b≥am2+bm,所以③正确;
∵ax12+bx1=ax22+bx2,
∴a(x1+x2)(x1-x2)+b(x1-x2)=0,
∴(x1-x2)[a(x1+x2)+b]=0,
而x1≠x2,
∴a(x1+x2)+b=0,
∴x1+x2=-=-=2,所以⑤正确.
故选B.
练习册系列答案
相关题目