题目内容
【题目】我们将在直角坐标系中圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=kx+4 与x轴、y轴分别交于A,B,∠OAB=30°,点P在x轴上,⊙P与l相切,当P在线段OA上运动时,使得⊙P成为整圆的点P个数是( )
A.6
B.8
C.10
D.12
【答案】A
【解析】解:∵直线l:y=kx+4 与x轴、y轴分别交于A、B,
∴B(0,4 ),
∴OB=4 ,
在RT△AOB中,∠OAB=30°,
∴OA= OB= × =12,
∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,
∴PM= PA,
设P(x,0),
∴PA=12﹣x,
∴⊙P的半径PM= PA=6﹣ x,
∵x为整数,PM为整数,
∴x可以取0,2,4,6,8,10,6个数,
∴使得⊙P成为整圆的点P个数是6.
故答案为:A.
根据直线AB的解析式求得OB的长,进而就可求得OA的长,根据切线的性质求得PM⊥AB,根据∠OAB=30°,求得PM与PA的数量关系, 然后根据“整圆”的定义,即可求得使得⊙P成为整圆的点P的坐标,从而求得点P个数.
练习册系列答案
相关题目