题目内容

【题目】如图,折叠矩形纸片ABCD的一边AD,使点D落在BC边上的点F处,若AB=8,BC=10,则△CEF的周长为( )

A.12
B.16
C.18
D.24

【答案】A
【解析】解:∵四边形ABCD为矩形,

∴AD=BC=10,AB=CD=8,

∵矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F处,

∴AF=AD=10,EF=DE,

在Rt△ABF中,

∵BF= =6,

∴CF=BC﹣BF=10﹣6=4,

∴△CEF的周长为:CE+EF+CF=CE+DE+CF=CD+CF=8+4=12.

所以答案是:A.

【考点精析】掌握勾股定理的概念和矩形的性质是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;矩形的四个角都是直角,矩形的对角线相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网