题目内容
3、如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=( )
分析:根据圆周角定理求得、:∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半)、∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知
∠BOD=180°-∠AOD,∴∠BCD=32°.
∠BOD=180°-∠AOD,∴∠BCD=32°.
解答:解:连接OD.
∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,
∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);
又∵∠BOD=180°-∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);
∴∠BCD=32°;
故选B.
∵AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,
∴∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半);
又∵∠BOD=180°-∠AOD,∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);
∴∠BCD=32°;
故选B.
点评:本题考查了圆周角定理.解答此题时,通过作辅助线OD,将隐含在题中的圆周角与圆心角的关系(同弧所对的圆周角是所对的圆心角的一半)显现出来.
练习册系列答案
相关题目