题目内容
【题目】某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.在图①中,∠B=90°,∠A=30°;图②中,∠D=90°,∠F=45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D、E两点始终在AC边上(移动开始时点D与点A重合).
(1)在△DEF沿AC方向移动的过程中,该同学发现:F、C两点间的距离逐渐 ;连接FC,∠FCE的度数逐渐 .(填“不变”、“变大”或“变小”)
(2)△DEF在移动的过程中,∠FCE与∠CFE度数之和是否为定值,请加以说明;
(3)能否将△DEF移动至某位置,使F、C的连线与AB平行?若能,求出∠CFE的度数;若不能,请说明理由.
【答案】(1)变小,变大;(2)定值,∠FCE+∠CFE=∠FED=45°;(3)能,∠CFE=15°.
【解析】
试题(1)根据图形的变化得出F、C两点间的距离变化和,∠FCE的度数变化规律;
(2)由外角的性质得出∠FEC+∠CFE=∠FED=45°,即可得出答案;
(3)要使FC∥AB,则需∠FCE=∠A=30°,进而得出∠CFE的度数.
试题解析;(1)F、C两点间的距离逐渐变小;连接FC,∠FCE的度数逐渐变大;故答案为:变小,变大;
(2)∠FCE与∠CFE度数之和为定值;理由如下:
∵∠D=90°,∠DFE=45°,又∵∠D+∠DFE+∠FED=180°,∴∠FED=45°,∵∠FED是△FEC的外角,∴∠FEC+∠CFE=∠FED=45°,即∠FCE与∠CFE度数之和为定值;
(3)要使FC∥AB,则需∠FCE=∠A=30°,又∵∠CFE+∠FCE=45°,∴∠CFE=45°﹣30°=15°.
【题目】某电器超市销售每台进价分别为200元,170元的A,B两种型号的电风扇,表中是近两周的销售情况:
销售时段 | 销售数量 | 销售收入 | |
A种型号 | B种型号 | ||
第一周 | 3台 | 5台 | 1800元 |
第二周 | 4台 | 10台 | 3100元 |
(进价、售价均保持不变,利润=销售收入-进货成本)
(1)求A,B两种型号的电风扇的销售单价.
(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,则A种型号的电风扇最多能采购多少台?
(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.