题目内容
【题目】我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:
(1)设装运A种脐橙的车辆数为,装运B种脐橙的车辆数为,求与之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
【答案】(1)(且为整数);(2)有5种方案,具体见试题解析;(3)方案一,14.08万元.
【解析】试题(1)等量关系为:车辆数之和=20;
(2)关系式为:装运每种脐橙的车辆数≥4;
(3)总利润为:装运A种脐橙的车辆数×6×12+装运B种脐橙的车辆数×5×16+装运C种脐橙的车辆数×4×10,然后按x的取值来判定.
试题解析:(1)根据题意,装运A种脐橙的车辆数为,装运B种脐橙的车辆数为,那么装运C种脐橙的车辆数为(),则有: ,整理得:(且为整数);
(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为, , .由题意得: ,解得: ,因为x为整数,所以x的值为4,5,6,7,8,所以安排方案共有5种.
方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;
方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,
方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,
方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,
方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;
(3)设利润为(百元)则: ,∵,∴的值随的增大而减小.要使利润最大,则,故选方案一, 最大=(百元)=14.08(万元),故当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元.
【题目】如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).
(1)求m及k的值;
(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.
【题目】某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.
次数 | 70≤x<90 | 90≤x<110 | 110≤x<130 | 130≤x<150 | 150≤x<170 |
人数 | 8 | 23 | 16 | 2 | 1 |
根据所给信息,回答下列问题:
(1)本次调查的样本容量是;
(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有人;
(3)根据上表的数据补全直方图;
(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).