题目内容
【题目】如图,直线与双曲线相交于点、,与x轴相交于C点.
求点A、B的坐标及直线的解析式;
求的面积;
观察第一象限的图象,直接写出不等式的解集;
如图,在x轴上是否存在点P,使得的和最小?若存在,请说明理由并求出P点坐标.
【答案】(1)(2)(3)(4)
【解析】
(1)先确定出点A,B坐标,再用待定系数法求出直线AB解析式;
(2)先求出点C,D坐标,再用面积的差即可得出结论;
(3)先确定出点P的位置,利用三角形的三边关系,最后用待定系数法求出解析式,即可得出结论.
点、在双曲线上,
,,
,,
点A,B在直线上,
,
,
直线AB的解析式为;
如图,
由知,直线AB的解析式为,
,,
,,
;
由知,,,
由图象知,不等式的解集为;
存在,理由:如图2,
作点关于x轴的对称点B′(4,-1),连接AB′交x轴于点P,连接BP,在x轴上取一点Q,连接AQ,BQ,
点B与点B′关于x轴对称,
点P,Q是BB′的中垂线上的点,
∴PB′=PB, QB′=QB,
在△AQB′中,AQ+B′Q>AB′
的最小值为AB′,
,B ′(4,-1),
直线AB′的解析式为,
令,
,
,
.
练习册系列答案
相关题目
【题目】某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号种选择:
污水处理器型号 | A型 | B型 |
处理污水能力(吨/月) | 240 | 180 |
已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.
(1)求每台A型、B型污水处理器的价格;
(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?