题目内容
| CE |
| AB |
| 1 |
| 3 |
2
2
.分析:由四边形ABCD是平行四边形,即可得BC=AD=4,AB∥CD,继而可证得△FEC∽△FAB,由相似三角形的对应边成比例,即可求得答案.
解答:解:∵四边形ABCD是平行四边形,
∴BC=AD=4,AB∥CD,
∴△FEC∽△FAB,
∴
=
=
,
∴
=
,
∴CF=
BC=
×4=2.
故答案为:2.
∴BC=AD=4,AB∥CD,
∴△FEC∽△FAB,
∴
| CF |
| BF |
| CE |
| AB |
| 1 |
| 3 |
∴
| CF |
| BC |
| 1 |
| 2 |
∴CF=
| 1 |
| 2 |
| 1 |
| 2 |
故答案为:2.
点评:此题考查了相似三角形的判定与性质以及平行四边形的性质.此题难度不大,注意掌握数形结合思想的应用.
练习册系列答案
相关题目