题目内容
【题目】已知:在△EFG中,∠EFG=90°,EF=FG,且点E,F分别在矩形ABCD的边AB,AD上.
(1)如图1,当点G在CD上时,求证:△AEF≌△DFG;
(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:EN=AE+DN;
(3)如图3,若AE=AD,EG,FG分别交CD于点M,N,求证:MG2=MNMD.
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】
(1)先用同角的余角相等,判断出∠AEF=∠DFG,即可得出结论;
(2)先判断出△AHF≌△DNF,得出AH=DN,FH=FN,进而判断出EH=EN,即可得出结论;
(3)先判断出AF=PG,PF=AE,进而判断出PG=PD,得出∠MDG=45°,进而得出∠FGE=∠GDM,判断出△MGN∽△MDG,即可得出结论.
(1)∵四边形ABCD是矩形,
∴∠A=∠D=90°,
∴∠AEF+∠AFE=90°,
∵∠EFG=90°,
∴∠AFE+∠DFG=90°,
∴∠AEF=∠DFG,
∵EF=FG,
∴△AEF≌△DFG(AAS);
(2)如图2,,
延长NF,EA相交于H,
∴∠AFH=∠DFN,
由(1)知,∠EAF=∠D=90°,
∴∠HAF=∠D=90°,
∵点F是AD的中点,
∴AF=DF,
∴△AHF≌△DNF(ASA),
∴AH=DN,FH=FN,
∵∠EFN=90°,
∴EH=EN,
∵EH=AE+AH=AE+DN,
∴EN=AE+DN;
(3)如图3,
过点G作GP⊥AD交AD的延长线于P,
∴∠P=90°,
同(1)的方法得,△AEF≌△PFG(AAS),
∴AF=PG,PF=AE,
∵AE=AD,
∴PF=AD,
∴AF=PD,
∴PG=PD,
∵∠P=90°,
∴∠PDG=45°,
∴∠MDG=45°,
在Rt△EFG中,EF=FG,
∴∠FGE=45°,
∴∠FGE=∠GDM,
∵∠GMN=∠DMG,
∴△MGN∽△MDG,
∴,
MG2=MNMD.
【题目】随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
时间(分钟) | 里程数(公里) | 车费(元) | |
小明 | 8 | 8 | 12 |
小刚 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?