题目内容
【题目】如图,在△ABC 中,点P是AC边上的一点,过点P作与BC平行的直线PQ,交AB于点Q,点D在线段 BC上,连接AD交线段PQ于点E,且,点G在BC延长线上,∠ACG的平分线交直线PQ于点F.
(1)求证:PC=PE;
(2)当P是边AC的中点时,求证:四边形AECF是矩形.
【答案】(1)见解析;(2)见解析
【解析】
(1)根据相似三角形的性质得出,等量代换得到,推出,于是得出结论;
(2)根据平行线的性质得到∠PFC=∠FCG,根据角平分线的性质得到∠PCF=∠FCG,等量代换得到∠PFC=∠FCG,根据等腰三角形的性质得到PF=PC,得到PF=PE,由已知条件得到AP=CP,推出四边形AECF是平行四边形,再证得∠ECF=90°,于是得出结论.
(1)证明:∵PQ∥BC,
∴△AQE∽△ABD,△AEP∽△ADC,
∴,
∴,
∵,
∴,
∴PC=PE;
(2)∵PF∥DG,
∴∠PFC=∠FCG,
∵CF平分∠PCG,
∴∠PCF=∠FCG,
∴∠PFC=∠FCG,
∴PF=PC,
∴PF=PE,
∵P是边AC的中点,
∴AP=CP,
∴四边形AECF是平行四边形,
∵PQ∥CD,
∴∠PEC=∠DCE,
∴∠PCE=∠DCE,
∴,
∴∠ECF=90°,
∴平行四边形AECF是矩形.
【题目】随着人们生活质量的提高,越来越多的人们关注运动与健康,近来“微信运动”逐渐被大家关注和喜爱.某兴趣小组为了了解某社区居民的“微信运动”情况,进行了随机抽样调查,对他们一日“微信运动”中的步数进行了统计,下面给出部分信息:
①
(步数/日) | 频数 | 频率 |
5 | ||
10 | 0.2 | |
15 | 0.3 | |
0.2 | ||
8 | 0.16 | |
2 | 0.04 |
这一组的数据为:
6000 6200 6200 6500 6600 6800 7000 7200 7200 7200 7800 8000 8300 8700 8900
根据以上信息,回答下列问题:
(1)本次被调查的居民有__________人:表中______________,___________;
(2)补全频数分布直方图;
(3)直接写出被调查的居民在“微信运动”中步数的中位数;
(4)本社区约有5000人,用调查样本估计一日步数不低于9000步的人数.