题目内容
【题目】如图,抛物线y=ax2+bx+c的对称轴为直线x=1,且过点(3,0),下列结论:①abc<0;②a﹣b+c>0;③2a+b=0;④b2﹣4ac<0;正确的有( )个.
A.1B.2C.3D.4
【答案】A
【解析】
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:∵抛物线开口向上,
∴a>0,
∵抛物线的对称轴为直线x=﹣=1,
∴b=﹣2a<0,
∵抛物线与y轴的交点在x轴下方,
∴c<0,
∴abc>0,所以①错误;
∵抛物线与x轴的一个交点为(3,0),而抛物线的对称轴为直线x=1,
∴抛物线与x轴的另一个交点为(﹣1,0),
∵x=﹣1时,y=0,
∴a﹣b+c=0,所以②错误;
∵b=﹣2a,
∴2a+b=0,所以③正确;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,所以④错误.
故选:A.
练习册系列答案
相关题目
【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
从上表可知,下列说法正确的个数是( )
①抛物线与x轴的一个交点为(﹣2,0);
②抛物线与y轴的交点为(0,6);
③抛物线的对称轴是x=1;
④在对称轴左侧y随x增大而减小;
⑤当y>0,则x的取值范围是-2<x<3
A.①②③B.②③④C.②④⑤D.①②⑤