题目内容
如图,已知直线与x轴交于点A,与y轴交于点C,抛物线
经过点A和点C,对称轴为直线l:
,该抛物线与x轴的另一个交点为B.
(1)求此抛物线的解析式;
(2)点P在直线l上,求出使△PAC的周长最小的点P的坐标;
(3)点M在此抛物线上,点N在y轴上,以A、B、M、N为顶点的四边形能否为平行四边形?若能,直接写出所有满足要求的点M的坐标;若不能,请说明理由.
(1)此抛物线的解析式为y=﹣(x﹣1)(x+3)=﹣x2﹣2x+3;
(2)P点坐标为(﹣1,2);
(3)M点坐标为(﹣2,3)或(﹣4,﹣5)或(4,﹣21).
解析试题分析:(1)根据抛物线的交点式可求此抛物线的解析式;
(2)直线BC与对称轴直线l:x=﹣1的交点即为所求使△PAC的周长最小的点P的坐标;
(3)讨论:当以AB为对角线,利用NA=MB和四边形ANBM为平行四边形,则可确定M的横坐标,然后代入抛物线解析式得到M点的纵坐标;当以AB为边时,根据平行四边形的性质得到MN=AB=4,则可确定M的横坐标,然后代入抛物线解析式得到M点的纵坐标.
试题解析:(1)直线y=﹣3x+3与x轴交于点A,与y轴交于点C,
当y=0时,﹣3x+3=0,解得x=1,
则A点坐标为(1,0);
当x=0时,y=3,
则C点坐标为(0,3);
抛物线的对称轴为直线x=﹣1,
则B点坐标为(﹣3,0);
把C(0,3)代入y=a(x﹣1)(x+3)得3=﹣3a,
解得a=﹣1,
则此抛物线的解析式为y=﹣(x﹣1)(x+3)=﹣x2﹣2x+3;
(2)连接BC,交对称轴于点P,如图1,
设直线BC的关系式为:y=mx+n,
把B(﹣3,0),C(0,3)代入y=mx+n得,
解得,
∴直线bC的关系式为y=x+3,
当x=﹣1时,y=﹣1+3=2,
∴P点坐标为(﹣1,2);
(3)当以AB为对角线,如图2,
∵四边形AMBN为平行四边形,
A点横坐标为1,N点横坐标为0,B点横坐标为﹣3,
∴M点横坐标为﹣2,
∴M点纵坐标为y=﹣4+4+3=3,
∴M点坐标为(﹣2,3);
当以AB为边时,如图3,
∵四边形ABMN为平行四边形,
∴MN=AB=4,即M1N=4,M2N=4,
∴F1的横坐标为﹣4,F2的横坐标为4,
对于y=﹣x2﹣2x+3,
当x=﹣4时,y=﹣16+8+3=﹣5;
当x=4时,y=﹣16﹣8+3=﹣21,
∴M点坐标为(﹣4,﹣5)或(4,﹣21).
综上所述,M点坐标为(﹣2,3)或(﹣4,﹣5)或(4,﹣21).
考点:二次函数综合题.
![](http://thumb.zyjl.cn/images/loading.gif)