题目内容
【题目】(1)如图1已知:∠B=25°,∠BED=80°,∠D=55°.探究AB与CD有怎样的位置关系.
(2)如图2已知AB∥EF,试猜想∠B,∠F,∠BCF之间的关系,写出这种关系,并加以证明.
(3)如图3已知AB∥CD,试猜想∠1,∠2,∠3,∠4,∠5之间的关系,请直接写出这种关系,不用证明.
【答案】(1)详见解析(2)∠BCF=∠B+∠F(3)∠1+∠3+∠5=∠2+∠4
【解析】
(1)过点E作EF∥AB,得∠BEF =25°,得∠DEF=55°,从而可证AB∥CD;
(2)作CD∥AB,根据平行线的传递性得CD∥EF,则根据平行线的性质得∠BCD=∠B,∠DCF=∠F,所以∠BCD+∠DCF=∠B+∠F,故可得结论;
(3)方法同(2)
(1)过点E作EF∥AB
∵∠B=25°
∴∠BEF=∠B=25°
∵∠BED=80°
∴∠DEF=∠BED-∠BEF=55°
∵∠D=55°
∴∠D=∠DEF
∴EF∥CD
∴AB∥CD
(2)过点C作CD∥AB,则CD∥EF,
∵AB∥CD,
∴∠BCD=∠B,
∵CD∥EF,
∴∠DCF=∠F,
∴∠BCD+∠DCF=∠B+∠F,
即∠C=∠B+∠F.
(3)∠1+∠3+∠5=∠2+∠4,
如图,
作MN∥AB,
由(2)的结论得到∠2=∠1+∠6,∠4=∠5+∠7,
∴∠2+∠4=∠1+∠6+∠5+∠7=∠1+∠3+∠5.
练习册系列答案
相关题目