题目内容
【题目】阅读下列材料,然后解答后面的问题.
我们知道方程2x+3y=12有无数组解,但在实际生活中我们往往只需要求出其正整数解.例:由2x+3y=12,得,(x、y为正整数)∴则有0<x<6.又为正整数,则为正整数.
由2与3互质,可知:x为3的倍数,从而x=3,代入.
∴2x+3y=12的正整数解为
问题:
(1)请你写出方程2x+y=5的一组正整数解:______;
(2)若为自然数,则满足条件的x值有______个;
A、2B、3C、4D、5
(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种购买方案?
【答案】(1)当x=1时,y=3;当x=2时,y=1(2)C(3)有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.
【解析】
根据题意可知,求方程的正整数解,先把方程做适当的变形,再列举正整数代入求解.(1)(2)参照例题的解题思路进行解答;
(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.则根据题意得:3m+5n=35,其中m、n均为自然数.参照例题的解题思路解该二元一次方程即可.
解:(1)由2x+y=5,得y=5-2x(x、y为正整数).
所以 ,即0<x<
∴当x=1时,y=3;
当x=2时,y=1.
即方程的正整数解是 或 ;
(2)同样,若 为自然数,
则有:0<x-2≤6,即2<x≤8.
当x=3时, ;
当x=4时, ;
当x=5时, ;
当x=8时, .
即满足条件x的值有4个,
故选C;
(3)设购买单价为3元的笔记本m本,单价为5元的钢笔n支.
则根据题意得:3m+5n=35,其中m、n均为自然数.
于是有: ,
解得: ,
所以0<m< .
由于n=7-m为正整数,则m为正整数,可知m为5的倍数.
∴当m=5时,n=4;
当m=10时,n=1.
答:有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;
或购买单价为3元的笔记本10本,单价为5元的钢笔1支.
故答案为:(1)当x=1时,y=3;当x=2时,y=1;(2)C;(3)有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支.
【题目】在“元旦”期间,平价商场对该商场商品进行如下的优惠促销活动:
打折前一次性购物总金额 | 优惠措施 |
小于等于 400 元 | 不优惠 |
超过 400 元,但不超过 600元 | 按售价打九折 |
超过 600 元 | 其中 600 元部分八折优惠,超过 600 元的部分打六折优惠 |
按上述优惠条件,若小华一次性购买售价为 80 元/件的商品 n 件时,实际付款 504 元, 则 n=_____.