题目内容
【题目】如图,点O是平行四边形ABCD的对称中心,将直线DB绕点O顺时针方向旋转,交DC、AB于点E、F.
(1)证明:△DEO≌△BFO;
(2)若DB=2,AD=1,AB=,当DB绕点O顺时针方向旋转45°时,判断四边形AECF的形状,并说明理由.
【答案】(1)证明见解析;(2)菱形,证明见解析.
【解析】
(1)由CD∥AB、OD=OB即可证明;
(2)由△DEO≌△BFO得OE=OF,结合OA=OC可判断AECF是平行四边形,再根据题干所给条件可证明∠AOE=90°,则可判定该四边形为菱形.
(1)证明:在平行四边形ABCD中,CD∥AB,
∴∠CDO=∠ABO,∠DEO=∠BFO.
又∵点O是平行四边形的对称中心,
∴OD=OB.
∴△DEO≌△BFO.
(2)解:∵在△ABD中,DB=2,AD=1,AB=,
∴DB2+AD2=AB2.
∴△ABD是直角三角形,且∠ADB=90°
∵OD=OB=DB=1,
∴AD=OD=1.
∴△OAD是等腰直角三角形,
∴∠AOD=45°.
当直线DB绕点O顺时针旋转45°时,即∠DOE=45°,
∴∠AOE=90°
∵△DEO≌△BFO,
∴OE=OF
又∵点O是平行四边形的对称中心,
∴OA=OC
∴四边形AECF是平行四边形
∴四边形AECF是菱形.
练习册系列答案
相关题目