题目内容
【题目】如图,将△ABC绕点C顺时针旋转m°得到△EDC,若点A、D、E在同一直线上,∠ACB=n°,则∠ADC的度数是( )
A. (m﹣n)°B. (90+n-m)°C. (90-n+m)°D. (180﹣2n﹣m)°
【答案】B
【解析】
根据旋转的性质即可得到∠ACD和∠CAD的度数,再根据三角形内角和定理进行解答即可.
解:∵将△ABC绕点C顺时针旋转m°得到△EDC.
∴∠DCE=∠ACB=n°,∠ACE=m°,AC=CE,
∴∠ACD=m°-n°,
∵点A,D,E在同一条直线上,
∴∠CAD=(180°-m°),
∵在△ADC中,∠ADC+∠DAC+∠DCA=180°,
∴∠ADC=180°-∠CAD-∠ACD=180°-(180°-m°)-(m°-n°)=90°+n°-m°=(90+n-m)°,
故选:B.
练习册系列答案
相关题目