题目内容
【题目】探究题
(1)问题发现
如图1,△ABC和△BDE均为等边三角形,点A,D,E在同一直线上,连接CD.填空;
①CDB的度数为;
②线段AE,CD之间的数量关系为 .
(2)拓展探究
如图2,△ABC和△DBE均为等腰直角三角形,∠ABC=∠DBE=90°,点A,D,E在同一直线上,BF为△DBE中DE边上的高,连接CD.
①求∠CDB的大小;
②请判断线段BF,AD,CD之间的数量关系,并说明理由.
(3)解决问题
如图3,在正方形ABCD中,AC=2 ,AE=1,CE⊥AE于E,请补全图形,求点B到CE的距离.
【答案】
(1)60°;AE=CD
(2)
解:∠CDB=45°,CD=AD+2BF
理由:∵△ACB和△DBE均为等腰直角三角形,
∴BA=CB,BD=BE,∠ABC=∠DBE=90°.
∴∠ABE=∠CBD.
在△BCD和△BAE中,
∵AB=BC,∠ABE=∠CBD,BD=BE,
∴△BCD≌△BAE(SAS),
∴∠CDB=∠AEB,CD=AE
∵BF是△DBE均为等腰直角三角形,
∴∠CDB=∠AEB=45,DE=2BF,
∴CD=AE=AD+DE=AD+2BF.
∴∠CDB=45°,CD=AD+2BF
(3)
解:①如图,
连接EB,ED,作BH⊥CE,BP⊥BE,
∵四边形ABCD是正方形,
∴∠BAC=45°,AB=AD=CD=BC=2,∠ABC=90°,
∴CD=2,
∴AC=2 ,
∵AE=1,
∴CE= ,
∵A,E,B,C四点共圆,
∴∠BCE=∠CAB=45°,
∴△PBE是等腰直角三角形,
∵△ABC是等腰直角三角形,且C,E,P共线,BH⊥CE,
∴由(2)的结论可得,CE=AE+2BH,
∴ =2BH+1,
∴BH= .
②同①的方法可得,CE=2BH﹣AE,
∴ =2BH﹣1,
∴BH= ,
∴点B到CE的距离为 或
【解析】解:(1)①∵△ACB和△DBE均为等边三角形,
∴BA=CB,BD=BE,∠ABC=∠DBE=60°.
∴∠ABE=∠CBD.
在△BCD和△BAE中,
∵AB=BC,∠ABE=∠CBD,BD=BE,
∴△BCD≌△BAE(SAS),
∴∠CDB=∠BEA.
∵△DBE为等边三角形,
∴∠CDB=∠BED=60°.
所以答案是:60°.
②∵△BCD≌△BAE,
∴CD=AE,
所以答案是:CD=AE,
【考点精析】解答此题的关键在于理解等腰三角形的性质的相关知识,掌握等腰三角形的两个底角相等(简称:等边对等角).