题目内容
如图,在△ABC中,∠BAC=135°,AD⊥BC,BD=4,DC=6,则△ABC的面积为______.


设AD=h,三角形ABC的面积是S,AB=c,AC=b.
根据S=
bcsin135°=5h,得2bc=20
h.
又根据余弦定理,得
100=b2+c2-2bccos135°,
即52+2h2+20h=100,
h2+10h-24=0,
h=2,h=-12(不合题意,应舍去).
则S=
×10×2=10,
故答案为:10.
根据S=
1 |
2 |
2 |
又根据余弦定理,得
100=b2+c2-2bccos135°,
即52+2h2+20h=100,
h2+10h-24=0,
h=2,h=-12(不合题意,应舍去).
则S=
1 |
2 |
故答案为:10.

练习册系列答案
相关题目