题目内容

【题目】《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8-5=3”,小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,己知阴影部分的面积为36,则该方程的正数解为( )

A.6B.3-3C.3-2D.3-

【答案】B

【解析】

根据题意列方程,即x2+6x就是阴影部分的面积,用配方法解二次方程,取正数解即可.

解: 由题意得:x2+6x=36,

解方程得:x2+2×3x+9=45,

x+32=45

x+3=3, 或x+3=-3,

x=3-3, 或x=-3-3<0,

∴该方程的正数解为:3-3

故答案为:B

练习册系列答案
相关题目

【题目】空间任意选定一点,以点为端点,作三条互相垂直的射线.这三条互相垂直的射线分别称作轴、轴、轴,统称为坐标轴,它们的方向分别为(水平向前),(水平向右),(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为,且的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体所在的面与轴垂直,所在的面与轴垂直,所在的面与轴垂直,如图1所示.若将轴方向表示的量称为几何体码放的排数,轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了层,用有序数组记作,如图3的几何体码放了层,用有序数组记作.这样我们就可用每一个有序数组表示一种几何体的码放方式.

1)有序数组所对应的码放的几何体是______________

A.B.C.D.

2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(____________________),组成这个几何体的单位长方体的个数为____________个.

3)为了进一步探究有序数组的几何体的表面积公式,某同学针对若干个单位长方体进行码放,制作了下列表格:

几何体有序数组

单位长方体的个数

表面上面积为S1的个数

表面上面积为S2的个数

表面上面积为S3的个数

表面积

根据以上规律,请直接写出有序数组的几何体表面积的计算公式;(用表示)

4)当时,对由个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(_____________ ______),此时求出的这个几何体表面积的大小为____________(缝隙不计)

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网