题目内容
【题目】如图,已知抛物线经过的三个顶点,其中点,点,轴,点是直线下方抛物线上的动点.
(1)求抛物线的解析式;
(2)过点且与轴平行的直线与直线、分别交与点、,当四边形的面积最大时,求点的坐标;
(3)当点为抛物线的顶点时,在直线上是否存在点,使得以、、为顶点的三角形与相似,若存在,直接写出点的坐标;若不存在,请说明理由.
【答案】(1);(2);(3)存在, ,
【解析】
(1)用待定系数法求出抛物线解析式即可;
(2)设点P(m,),表示出PE=,再用S四边形AECP=S△AEC+S△APC=AC×PE,建立函数关系式,求出最值即可;
(3)先判断出PF=CF,再得到∠PCA=∠EAC,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.
(1)∵点,在抛物线上,
∴,
∴,
∴抛物线的解析式为,
(2)∵AC∥x轴,A(0,3)
∴=3,
∴x1=6,x2=0,
∴点C的坐标(8,3),
∵点,,
求得直线AB的解析式为y=x+3,
设点P(m,)∴E(m,m+3)
∴PE=m+3()=,
∵AC⊥EP,AC=8,
∴S四边形AECP
=S△AEC+S△APC
=AC×EF+AC×PF
=AC×(EF+PF)
=AC×PE
=×8×()
=m212m
=(m+6)2+36,
∵8<m<0
∴当m=6时,四边形AECP的面积的最大,此时点P(6,0);
(3)∵=,
∴P(4,1),
∴PF=yFyP=4,CF=xFxC=4,
∴PF=CF,
∴∠PCF=45°
同理可得:∠EAF=45°,
∴∠PCF=∠EAF,
∴在直线AC上存在满足条件的Q,
设Q(t,3)且AB==12,AC=8,CP=,
∵以C、P、Q为顶点的三角形与△ABC相似,
①当△CPQ∽△ABC时,
∴,
∴,
∴t=或t=(不符合题意,舍)
∴Q(,3)
②当△CQP∽△ABC时,
∴,
∴,
∴t=4或t=20(不符合题意,舍)
∴Q(4,3)
综上,存在点 .