题目内容

【题目】如图,点A,B,C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.

(1)求证:AP是⊙O的切线;
(2)求PD的长.

【答案】
(1)解:证明:连接OA.

∵∠B=60°,

∴∠AOC=2∠B=120°,

又∵OA=OC,

∴∠ACP=∠CAO=30°,

∴∠AOP=60°,

∵AP=AC,

∴∠P=∠ACP=30°,

∴∠OAP=90°,

∴OA⊥AP,

∴AP是⊙O的切线,


(2)解:连接AD.

∵CD是⊙O的直径,

∴∠CAD=90°,

∴AD=ACtan30°=3× =

∵∠ADC=∠B=60°,

∴∠PAD=∠ADC﹣∠P=60°﹣30°=30°,

∴∠P=∠PAD,

∴PD=AD=


【解析】(1)连接OA,由直径所对的圆周角为90°可得到∠DAC=90°,故此可得到∠ACP=∠APC=30°,然后再求得∠AOP=60°,从而得到∠PAO=90°;(2)由直径所对的圆周角为90°可得到∠DAC=90°,然后利用三角函数与等腰三角形的判定定理可求得PD的长.
【考点精析】利用圆周角定理和切线的判定定理对题目进行判断即可得到答案,需要熟知顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网