题目内容
【题目】把多项式ax2+2ax+a分解因式的结果是 .
【答案】a(x+1)2【解析】解:ax2+2ax+a =a(x2+2x+1)=a(x+1)2 . 所以答案是:a(x+1)2 .
【题目】如果二次三项式x2﹣2(m+1)x+16是一个完全平方式,那么m的值是_____.
【题目】已知A(0,2),B(4,0).(1)如图1,连接AB,若D(0,﹣6),DE⊥AB于点E,B、C关于y轴对称,M是线段DE上的一点,且DM=AB,连接AM,试判断线段AC与AM之间的位置和数量关系,并证明你的结论;(2)如图2,在(1)的条件下,若N是线段DM上的一个动点,P是MA延长线上的一点,且DN=AP,连接PN交y轴于点Q,过点N作NH⊥y轴于点H,当N点在线段DM上运动时,△MQH的面积是否为定值?若是,请求出这个值;若不是,请说明理由.
【题目】太阳的半径约是69000千米,用科学记数法表示约是千米.
【题目】下列命题中正确的是( )
A. 两条对角线互相平分的四边形是平行四边形
B. 两条对角线相等的四边形是矩形
C. 两条对角线互相垂直的四边形是菱形
D. 两条对角线互相垂直且平分的四边形是正方形
【题目】x2-5x-6=0的两根为( )
A.6和-1B.-6和1C.-2和-3D.2和3
【题目】已知,如图∠MON=30°,P为∠MON平分线上一点,PD⊥ON于D,PE∥ON,交OM于E,若OE=12cm,则PD长为 .
【题目】如图,锐角三角形ABC中(AB>AC),AH⊥BC,垂足为H,E、D、F分别是各边的中点,则四边形EDHF是( ) A.梯形B.等腰梯形C.直角梯形D.矩形
【题目】问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF= ∠BAD,上述结论是否仍然成立,并说明理由;(3)如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.