题目内容
【题目】如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).
【答案】解:如图:
过P作PM⊥AB于M,
则∠PMB=∠PMA=90°,
∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20海里,
∴PM= AP=10海里,AM=cos30°AP=10 海里,
∴∠BPM=∠PBM=45°,
∴PM=BM=10海里,
∴AB=AM+BM=(10+10 )海里,
∴BP= =10 海里,
即小船到B码头的距离是10 海里,A、B两个码头间的距离是(10+10 )海里.
【解析】过P作PM⊥AB于M,求出∠PBM=45°,∠PAM=30°,求出PM,即可求出BM、BP.
练习册系列答案
相关题目