题目内容

【题目】已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D
(1)如图1,求证:BD=ED;
(2)如图2,AD为⊙O的直径.若BC=6,sin∠BAC= ,求OE的长.

【答案】
(1)证明:连接BE.

∵是△ABC的内心,

∴∠ABE=∠CBE,∠BAD=∠CAD.

∵∠DBC=∠CAD.

∴∠DBC=∠BAD.

∵∠BED=∠BAD+∠ABE,

∴∠DBE=∠DEB.

∴BD=ED.


(2)解:如图2所示;连接OB.

∵AD是直径,A平分∠BAC,

∴AD⊥BC,且BD=FC=3.

∵∠BAC=∠BOD,sin∠BAC= ,BF=3,

∴OB=5.

∵在Rt△BOF中,BF=3,OB=5,

∴OF= =4.

∴DF=1.

在Rt△BDF中,BF2+DF2=BD2

∴BD=

∴DE=

使用OE=5﹣


【解析】(1)连接BE.依据三角形的内心的性质以及圆周角定理证明∠DBE=∠DEB即可;(2)连接OB.先证明圆周角定理和三角形的内心的性质可知∠BAC=∠BOF,依据锐角三角函数的定义可求得OB的长,然后依据勾股定理可求得OF的长于是得到DF的长,接下来,在△BDF中,由勾股定理可求得BD的长,依据问题(1)的结论可得到DE的长,从而求得OE的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网