题目内容
【题目】(2017山东省泰安市)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.
(1)证明:∠BDC=∠PDC;
(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.
【答案】(1)证明见解析;(2).
【解析】试题(1)直接利用等腰三角形的性质结合互余的定义得出∠BDC=∠PDC;
(2)首先过点C作CM⊥PD于点M,进而得出△CPM∽△APD,求出EC的长即可得出答案.
试题解析:解:(1)∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°.∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°.∵PD⊥AD,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC;
(2)过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,∴,设CM=CE=x,∵CE:CP=2:3,∴PC=x,∵AB=AD=AC=1,∴,解得:x=,故AE=1﹣=.
【题目】某超市计划购进甲、乙两种型号的节能灯共1000只,这两种节能灯的进价、售价如下表:
进价(元/只) | 售价(元/只) | |
甲型 | 25 | 30 |
乙型 | 45 | 60 |
(1)如果进货款恰好为37000元,那么可以购进甲型节能灯多少只?
(2)超市为庆祝元旦进行大促销活动,决定对乙型节能灯进行打折销售,要求全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?
【题目】喜迎新年,某社区超市第一次用5000元购进甲、乙两种商品,其中甲商品件数是品的件数的2倍,甲、乙两种商品的进价和售价如下表:
甲 | 乙 | |
进价(元/件) | 15 | 20 |
售价(元/件) | 30 | 30 |
(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?
(2)能市第二次以第一次的进价又购进甲、乙两种商品,其中购进乙种商品的件数不变,购进甲种商品的件数是第一次购进甲种商品件数的2倍;乙商品按原价销售,甲商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多600元,求第二次甲种商品按原价打几折销售?