题目内容

如图,某海滨浴场的海岸线可以看作直线,如图,1号救生员在岸边的点A看到海中的点B有人求救,便立即向前跑300米到离点B最近的点D,再跳入海中沿直线游到点B救助;若救生员在岸上跑步的速度都是6米/秒,在水中游泳的速度都是2米/秒,且∠BAD=45°
(1)请问1号救生员到达点B处的时间是多少?
(2)若2号救生员先从点A跑到点C,再跳入海中沿直线游到点B救助,且∠BCD=60°,请问1号救生员与2号救生员谁先到达点B?
(1)由题意得:T1=
300
6
=50,T2=
300
2
=150,
∴T=T1+T2=200秒;

(2)∵AD=300米,∠BAD=45°,
则在Rt△ABD中,BD=300米,
又∵∠BCD=60°
∴AC=300-100
3
,BC=200
3

T=
300-100
3
6
+
200
3
2
=50+
250
3
3
≈194秒,
∵194<200,
∴2号救生员先到达.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网