题目内容

如图,在△ABC中,∠ABC=90°,边AC的垂直平分线交BC于点D,交AC于点E,连接BE.
(1)若∠C=30°,求证:BE是△DEC外接圆的切线;
(2)若BE=
3
,BD=1,求△DEC外接圆的直径.
(1)证明:∵DE垂直平分AC,
∴∠DEC=90°,AE=CE,
∴DC为△DEC外接圆的直径,
取DC的中点O,连结OE,如图,
∵∠ABC=90°,
∴BE为Rt△ABC斜边上的中线,
∴EB=EC,
∵∠C=30°,
∴∠EBC=30°,∠EOD=2∠C=60°,
∴∠BEO=90°,
∴OE⊥BE,
而OE为⊙O的半径,
∴BE是△DEC外接圆的切线;

(2)∵BE为Rt△ABC斜边上的中线,
∴AE=EC=BE=
3

∴AC=2
3

∵∠ECD=∠BCA,
∴Rt△CEDRt△CBA,
CE
CB
=
CD
CA

而CB=CD+BD=CD+1,
3
CD+1
=
CD
2
3

解得CD=2或CD=-3(舍去),
∴△DEC外接圆的直径为2.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网