题目内容
如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°,求∠APB的度数.
如图,∵在△ABO中,OA=OB,∠OAB=30°,
∴∠AOB=180°-2×30°=120°,
∵PA、PB是⊙O的切线,
∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,
∴在四边形OAPB中,
∠APB=360°-120°-90°-90°=60°.
∴∠AOB=180°-2×30°=120°,
∵PA、PB是⊙O的切线,
∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,
∴在四边形OAPB中,
∠APB=360°-120°-90°-90°=60°.
练习册系列答案
相关题目