题目内容
【题目】如图,在平面直角坐标系中,直线是第一、三象限的角平分线.
(1)由图观察易知A(0,2)关于直线l的对称点A′的坐标为(2,0),请在图中分别标明B(5,3)、C(-2,5)关于直线l的对称点B′、C′的位置,并写出他们的坐标:___________、___________;
(2)结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点关于第一、三象限的角平分线的对称点的坐标为___________(不必证明);
(3)已知两点、,试在直线L上画出点Q,使点Q到D、E两点的距离之和最小,求QD+QE的最小值.
【答案】(1),.(2)(3)
【解析】
(1)根据对称轴为第一、三象限的角平分线,结合图形得出B′、C′两点坐标;
(2)由(1)的结论,并与B、C两点坐标进行比较,得出一般规律;
(3)由轴对称性作出满足条件的Q点,结合勾股定理,得出结论.
(1)如图,由点关于直线y=x轴对称可知:B'(3,5),C'(5,-2).
故答案为:(3,5),(5,-2);
(2)由(1)的结果可知,
坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′的坐标为 (b,a).
故答案为:(b,a);
(3)由(2)得,D(1,-3)关于直线l的对称点D'的坐标为(-3,1),连接D'E交直线l于点Q,此时点Q到D、E两点的距离之和最小,D'E==,
∴QD+QE的最小值为:.
练习册系列答案
相关题目