题目内容
【题目】(1)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.请按要求画图:将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,则∠AB′B= ;
(2)如图2,在等边三角形ABC内有一点P,且PA=,PB=2,PC=,求∠BPC的度数和等边三角形ABC的边长;
(3)如图3,在正方形ABCD内有一点P,且PA=,PB=2,PC=,求∠BPC的度数和正方形ABCD的边长.
【答案】(1)见解析,45°;(2)∠BPC=150°,等边三角形ABC的边长为;(3)∠BPC=135°,正方形ABCD的边长为.
【解析】
(1)根据旋转角,旋转方向画出图形即可,只要证明△ABB′是等腰直角三角形即可;
(2)将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PB是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),所以∠AP′B=150°,而∠BPC=∠AP′B=150°;过点B作BM⊥AP′,交AP′的延长线于点M,由∠MP′B=30°,求出BM=1,P′M=,根据勾股定理即可求出答案;
(3)将△BPC绕点B逆时针旋转90°得到△AEB,与(1)类似:可得:∠EBP=∠EBA+∠ABP=∠ABC=90°,求出∠BEP=(180°90°)=45°,根据勾股定理的逆定理求出∠AP′P=90°,推出∠BPC=∠AEB=90°+45°=135°
解:(1)如图1所示,
连接BB′,将△ABC绕点A按顺时针方向旋转90°,
∴AB=AB′,∠B′AB=90°,
∴∠AB′B=45°,
故答案为:45°;
(2)∵△ABC是等边三角形,
∴∠ABC=60°,
将△BPC绕点B顺时针旋转60°得出△ABP′,如图2,
∴AP′=CP=,BP′=BP=2,∠PBC=∠P′BA,∠AP′B=∠BPC,
∵∠PBC+∠ABP=∠ABC=60°,
∴∠ABP′+∠ABP=∠ABC=60°,
∴△BPP′是等边三角形,
∴PP′=2,∠BP′P=60°,
∵AP′=,AP=,
∴AP′2+PP′2=AP2,
∴∠AP′P=90°,则△PP′A是 直角三角形;
∴∠BPC=∠AP′B=90°+60°=150°;
过点B作BM⊥AP′,交AP′的延长线于点M,
∴∠MP′B=30°,BM=1,
由勾股定理得:P′M=,
∴AM=,
由勾股定理得:AB=.
(3)如图3,将△BPC绕点B逆时针旋转90°得到△AEB,
与(1)类似:可得:AE=PC=,BE=BP=2,∠BPC=∠AEB,∠ABE=∠PBC,
∴∠EBP=∠EBA+∠ABP=∠ABC=90°,
∴∠BEP=(180°﹣90°)=45°,
由勾股定理得:EP=,
∵AE=,AP=,EP=,
∴AE2+PE2=AP2,
∴∠AEP=90°,
∴∠BPC=∠AEB=90°+45°=135°.
∴AB=.
【题目】某通讯公司推出了移动电话的两种计费方式(详情见下表)。
月使用费/元 | 主叫限定时间/分 | 主叫超时费/(元/分) | 被叫 | |
方式一 | 58 | 150 | 0.25 | 免费 |
方式二 | 88 | 350 | 0.19 | 免费 |
设一个月内使用移动电话主叫的时间为分(为正整数),请根据表中提供的信息回答下列问题:
(1)用含有的式子填写下表:
≤150 | 150<<350 | =350 | >350 | |
方式一计费/元 | 58 |
| 108 |
|
方式二计费/元 | 88 | 88 | 88 |
|
(Ⅰ)当为何值时,两种计费方式的费用相等?
(Ⅱ)请根据(Ⅰ)和(Ⅱ)的计算及生活经验,直接写出不同时间段,选用哪种计费方式省钱.