题目内容
【题目】如图,在平面直角坐标系中,直线分别与轴、轴交于点,,且点的坐标为,点为的中点.
(1)点的坐标是________,点的坐标是________;
(2)直线上有一点,若,试求出点的坐标;
(3)若点为直线上的一个动点,过点作轴的垂线,与直线交于点,设点的横坐标为,线段的长度为,求与的函数解析式.
【答案】(1),;(2)或;(3).
【解析】
(1)将点A(8,0)代入可求得一次函数解析式,再令x=0即可得到B点坐标;因为C是A、B中点,利用中点坐标公式可求出C点坐标;
(2)先求出△AOC的面积,则△NOA的面积为△AOC的面积的一半,设N点的坐标,可根据列出方程求解;
(3)可先求出直线OC的函数解析式,把点P、Q坐标表示出来,分情况讨论即可得出答案.
解:(1)将A(8,0)代入得:,解得:b=6;
∴
令x=0,得:y=6,∴点的坐标为
∵C为AB中点,
∴的坐标为
故答案为:点的坐标为,的坐标为;
(2)或
由题可得S△AOC=
∵
∴S△NOA=
设
S△NOA=
解得:n=6或n=10
将n=6代入得;
将n=10代入得;
∴或
(3)依照题意画出图形,如图所示.
解图1 解图2
∵.
设直线的解析式为,
则有,解得:,
∴直线的解析式为.
∵点在直线上,点在直线上,点的横坐标为,轴,
∴,
当时,;
当时,.
故与的函数解析式为.
练习册系列答案
相关题目