ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=ax2+bx+2µÄͼÏóÓëyÖá½»ÓÚµãA£¬¶Ô³ÆÖáÊÇÖ±Ïßx=
£¬ÒÔOAΪ±ßÔÚyÖáÓÒ²à×÷µÈ±ßÈý½ÇÐÎOAB£¬µãBÇ¡ºÃÔÚ¸ÃÅ×
ÎïÏßÉÏ£® ¶¯µãPÔÚxÖáÉÏ£¬ÒÔPAΪ±ß×÷µÈ±ßÈý½ÇÐÎAPQ£¨¡÷APQµÄ¶¥µã A¡¢P¡¢Q°´ÄæÊ±Õë±ê¼Ç£©£®
£¨1£©ÇóµãBµÄ×ø±êÓëÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±µãPÔÚÈçͼλÖÃʱ£¬ÇóÖ¤£º¡÷APO¡Õ¡÷AQB£»
£¨3£©µ±µãPÔÚxÖáÉÏÔ˶¯Ê±£¬µãQ¸ÕºÃÔÚÅ×ÎïÏßÉÏ£¬ÇóµãQµÄ×ø±ê£»
£¨4£©Ì½¾¿£ºÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔA¡¢O¡¢Q¡¢BΪ¶¥µãµÄËıßÐÎÊÇÌÝÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
| ||
| 3 |
£¨1£©ÇóµãBµÄ×ø±êÓëÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±µãPÔÚÈçͼλÖÃʱ£¬ÇóÖ¤£º¡÷APO¡Õ¡÷AQB£»
£¨3£©µ±µãPÔÚxÖáÉÏÔ˶¯Ê±£¬µãQ¸ÕºÃÔÚÅ×ÎïÏßÉÏ£¬ÇóµãQµÄ×ø±ê£»
£¨4£©Ì½¾¿£ºÊÇ·ñ´æÔÚµãP£¬Ê¹µÃÒÔA¡¢O¡¢Q¡¢BΪ¶¥µãµÄËıßÐÎÊÇÌÝÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾Ýº¯Êý½âÎöʽc=2£¬¿ÉµÃ³öOA=OB=AB=2£¬¹ýµãB×÷BE¡ÍxÖáÓëµãE£¬¸ù¾ÝOB=2£¬¡ÏAOB=60¡ã£¬¿ÉÇó³öBE¡¢OEµÄ³¤¶È£¬¼Ì¶øµÃ³öµãBµÄ×ø±ê£¬¸ù¾Ýº¯ÊýµÄ¶Ô³ÆÖáΪx=
£¬ÔÙ½«µãBµÄ×ø±ê´úÈë¿ÉµÃ³öº¯Êý½âÎöʽ£®
£¨2£©¸ù¾ÝµÈ±ßÈý½ÇÐεÄÐÔÖʿɵóöAB=AO¡¢AP=AQ£¬¡ÏPAO=¡ÏQAB£¬ÀûÓÃSAS¿ÉÖ¤µÃ½áÂÛ£®
£¨3£©ÐèÒª·ÖÁ½ÖÖÇé¿ö£¬¢ÙµãQÔÚµÚÈýÏóÏÞµÄÅ×ÎïÏßÉÏ£¬¢ÚµãQÔÚµÚÒ»ÏóÏÞµÄÅ×ÎïÏßÉÏ£¬·Ö±ðÇó½â¼´¿É£®
£¨4£©¢Ùµ±µãPÔÚxÖḺ°ëÖáÉÏʱ£¬µãQÔÚµãBµÄÏ·½£¬´Ëʱ£¬AB¡ÎOQ£»¢Úµ±µãPÔÚxÖáÕý°ëÖáÉÏʱ£¬µãQÔÚµãBµÄÉÏ·½´Ëʱ£¬AQ¡ÎOB£¬ÒÀ´ÎÇó½âµãPµÄ×ø±ê¼´¿É£®
| ||
| 3 |
£¨2£©¸ù¾ÝµÈ±ßÈý½ÇÐεÄÐÔÖʿɵóöAB=AO¡¢AP=AQ£¬¡ÏPAO=¡ÏQAB£¬ÀûÓÃSAS¿ÉÖ¤µÃ½áÂÛ£®
£¨3£©ÐèÒª·ÖÁ½ÖÖÇé¿ö£¬¢ÙµãQÔÚµÚÈýÏóÏÞµÄÅ×ÎïÏßÉÏ£¬¢ÚµãQÔÚµÚÒ»ÏóÏÞµÄÅ×ÎïÏßÉÏ£¬·Ö±ðÇó½â¼´¿É£®
£¨4£©¢Ùµ±µãPÔÚxÖḺ°ëÖáÉÏʱ£¬µãQÔÚµãBµÄÏ·½£¬´Ëʱ£¬AB¡ÎOQ£»¢Úµ±µãPÔÚxÖáÕý°ëÖáÉÏʱ£¬µãQÔÚµãBµÄÉÏ·½´Ëʱ£¬AQ¡ÎOB£¬ÒÀ´ÎÇó½âµãPµÄ×ø±ê¼´¿É£®
½â´ð£º½â£º£¨1£©¹ýµãB×÷BE¡ÍxÖáÓëµãE£¬

¡ß¶þ´Îº¯Êý½âÎöʽc=2£¬
¡àOA=OB=AB=2£¬
ÓÖ¡ÏBOE=90¡ã-¡ÏAOB=30¡ã£¬
¡àBE=1£¬OE=
£¬
¡àµãBµÄ×ø±êΪ£¨
£¬1£©£®
½«µãB×ø±ê´úÈë¿ÉµÃ£º3a+
b+2=1¢Ù£¬
¶Ô³ÆÖá=-
=
¢Ú
ÁªÁ¢¢Ù¢Ú¿ÉµÃa=-1£®b=
£¬
¹Ê¿ÉµÃº¯Êý½âÎöʽΪ£ºy=-x2+
x+2£®
£¨2£©ÓÉÌâÒâµÃ£¬AB=AO¡¢AP=AQ£¬
ÓÖ¡ß¡ÏPAQ+¡ÏQOA=¡ÏBAO+¡ÏQAO£¬
¡à¡ÏPAO=¡ÏQAB£¬
¹Ê¿ÉµÃ£º¡÷APO¡Õ¡÷AQB£¨SAS£©£®
£¨3£©¢Ùµ±QÔÚµÚÈýÏóÏÞµÄÅ×ÎïÏßÉÏ£¬ÉèBQÓëyÖá½»µãΪF£¬

ÓÉ£¨2£©¿ÉµÃ¡ÏABQ=90¡ã£¬
ÓÖ¡ß¡ÏBAO=60¡ã£¬
¡à¡ÏQBO=30¡ã£¬
¡àAFB=¡ÏAOB-¡ÏQBO=30¡ã£¬
¡àAF=2AB=4£¬OF=2£¬¼´F£¨0£¬-2£©
°ÑF£¨0£¬-2£©£¬B£¨
£¬1£©´úÈëy=kx+bµÃk=
£¬b=-2£¬
¡àÖ±ÏßBQ½âÎöʽΪ£ºy=
x-2£¬
½â·½³Ì×飺
£¬
½âµÃ£º
£¬
£¨ÉáÈ¥£©
¹Ê¿ÉµÃµãQµÄ×ø±êΪ£¨-
£¬-6£©£»
¢Úµ±QÓëBÖØºÏʱ£¬QµÄ×ø±êΪ£¨
£¬1£©
¡àÂú×ãÌõ¼þµÄµãQ×ø±êΪ£º£¨-
£¬-6£©¡¢£¨
£¬1£©£®
£¨4£©ÓÉ£¨2£©¿ÉÖª£¬µãQ×ÜÔÚ¹ýµãBÇÒÓëAB´¹Ö±µÄÖ±ÏßÉÏ£¬¿É¼ûAOÓëBQ²»Æ½ÐУ®
¢Ùµ±µãPÔÚxÖḺ°ëÖáÉÏʱ£¬µãQÔÚµãBµÄÏ·½£¬´Ëʱ£¬ÈôAB¡ÎOQ£¬ËıßÐÎAOQB¼´ÊÇÌÝÐΣ¬

ÉèµãPµÄ×ø±êΪx£¬
¡ß¡ÏOBQ1=30¡ã£¨µÚÈýÎÊÒÑ×ö˵Ã÷£©£¬OB=2£¬
¡àOQ1=1£¬
¡àµãQµÄ×ø±êΪ£¨
£¬-
£©£¬
¡àAQ1=
=AP=
£¬
½âµÃ£ºx=-
»ò
£¨ÉáÈ¥£©£»
¢Úµ±µãPÔÚxÖáÕý°ëÖáÉÏʱ£¬µãQÔÚµãBµÄÉÏ·½´Ëʱ£¬ÈôAQ¡ÎOB£¬ËıßÐÎAOQB¼´ÊÇÌÝÐΣ¬

¡ß¡ÏAPO=30¡ã£¬AO=2£¬
¡àOP=2
£¬¼´µãPµÄ×ø±êΪ£¨2
£¬0£©£®
×ÛÉϿɵÃPµÄ×ø±êΪ£¨-
£¬0£©»ò£¨2
£¬0£©
¡ß¶þ´Îº¯Êý½âÎöʽc=2£¬
¡àOA=OB=AB=2£¬
ÓÖ¡ÏBOE=90¡ã-¡ÏAOB=30¡ã£¬
¡àBE=1£¬OE=
| 3 |
¡àµãBµÄ×ø±êΪ£¨
| 3 |
½«µãB×ø±ê´úÈë¿ÉµÃ£º3a+
| 3 |
¶Ô³ÆÖá=-
| b |
| 2a |
| ||
| 3 |
ÁªÁ¢¢Ù¢Ú¿ÉµÃa=-1£®b=
2
| ||
| 3 |
¹Ê¿ÉµÃº¯Êý½âÎöʽΪ£ºy=-x2+
2
| ||
| 3 |
£¨2£©ÓÉÌâÒâµÃ£¬AB=AO¡¢AP=AQ£¬
ÓÖ¡ß¡ÏPAQ+¡ÏQOA=¡ÏBAO+¡ÏQAO£¬
¡à¡ÏPAO=¡ÏQAB£¬
¹Ê¿ÉµÃ£º¡÷APO¡Õ¡÷AQB£¨SAS£©£®
£¨3£©¢Ùµ±QÔÚµÚÈýÏóÏÞµÄÅ×ÎïÏßÉÏ£¬ÉèBQÓëyÖá½»µãΪF£¬
ÓÉ£¨2£©¿ÉµÃ¡ÏABQ=90¡ã£¬
ÓÖ¡ß¡ÏBAO=60¡ã£¬
¡à¡ÏQBO=30¡ã£¬
¡àAFB=¡ÏAOB-¡ÏQBO=30¡ã£¬
¡àAF=2AB=4£¬OF=2£¬¼´F£¨0£¬-2£©
°ÑF£¨0£¬-2£©£¬B£¨
| 3 |
| 3 |
¡àÖ±ÏßBQ½âÎöʽΪ£ºy=
| 3 |
½â·½³Ì×飺
|
½âµÃ£º
|
|
¹Ê¿ÉµÃµãQµÄ×ø±êΪ£¨-
4
| ||
| 3 |
¢Úµ±QÓëBÖØºÏʱ£¬QµÄ×ø±êΪ£¨
| 3 |
¡àÂú×ãÌõ¼þµÄµãQ×ø±êΪ£º£¨-
4
| ||
| 3 |
| 3 |
£¨4£©ÓÉ£¨2£©¿ÉÖª£¬µãQ×ÜÔÚ¹ýµãBÇÒÓëAB´¹Ö±µÄÖ±ÏßÉÏ£¬¿É¼ûAOÓëBQ²»Æ½ÐУ®
¢Ùµ±µãPÔÚxÖḺ°ëÖáÉÏʱ£¬µãQÔÚµãBµÄÏ·½£¬´Ëʱ£¬ÈôAB¡ÎOQ£¬ËıßÐÎAOQB¼´ÊÇÌÝÐΣ¬
ÉèµãPµÄ×ø±êΪx£¬
¡ß¡ÏOBQ1=30¡ã£¨µÚÈýÎÊÒÑ×ö˵Ã÷£©£¬OB=2£¬
¡àOQ1=1£¬
¡àµãQµÄ×ø±êΪ£¨
| ||
| 2 |
| 1 |
| 2 |
¡àAQ1=
(0-
|
| (0-x)2+(2-0)2 |
½âµÃ£ºx=-
| 3 |
| 3 |
¢Úµ±µãPÔÚxÖáÕý°ëÖáÉÏʱ£¬µãQÔÚµãBµÄÉÏ·½´Ëʱ£¬ÈôAQ¡ÎOB£¬ËıßÐÎAOQB¼´ÊÇÌÝÐΣ¬
¡ß¡ÏAPO=30¡ã£¬AO=2£¬
¡àOP=2
| 3 |
| 3 |
×ÛÉϿɵÃPµÄ×ø±êΪ£¨-
| 3 |
| 3 |
µãÆÀ£º´ËÌ⿼²éÁ˶þ´Îº¯ÊýµÄ×ÛºÏÌ⣬×ۺϿ¼²ìµÄ֪ʶµã½Ï¶à£¬×¢ÒâÔÚ½â´ðÿһÎÊʱ£¬ÏÈ×÷³öͼÐΣ¬ÓÐÖúÓÚÎÒÃÇ·ÖÎö½â´ð£¬ÒªÇóÎÒÃǽ«Ëùѧ֪ʶµÄÈÚ»á¹áͨ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿