题目内容
二次函数的图象如图所示,根据图象解答下列问题:
(1)写出方程的两个根.
(2)写出不等式的解集.
(3)写出随的增大而减小的自变量的取值范围.
(4)若方程有两个不相等的实数根,求的取值范围.
(1)写出方程的两个根.
(2)写出不等式的解集.
(3)写出随的增大而减小的自变量的取值范围.
(4)若方程有两个不相等的实数根,求的取值范围.
(1) x1=1,x2=3;(2) 1<x<3;(3)x>2;(4)k<2.
试题分析:(1)看与x轴的交点即可;
(2)看y轴上方的函数图象相对应的x的值即可;
(3)看对称轴右侧的函数图象相对应的x的范围即可;
(4)先移项,整理为一元二次方程,让根的判别式大于0求值即可.
试题解析:(1)∵二次函数y=ax2+bx+c的图象与x轴的交点为(1,0),(3,0)
∴方程ax2+bx+c=0的两个根x1=1,x2=3;
(2)由二次函数y=ax2+bx+c的图象可知:1<x<3时,二次函数y=ax2+bx+c的值大于0
∴不等式ax2+bx+c>0的解集为1<x<3;
(3)由图象可知:二次函数y=ax2+bx+c的对称轴为x=2
∴y随x的增大而减小的自变量x的取值范围为x>2;
(4)由图象可知:二次函数y=ax2+bx+c的顶点坐标为(2,2),
当直线y=k,在(0,2)的下边时,一定与抛物线有两个不同的交点,因而当k<2时,方程ax2+bx+c=k有两个不相等的实数根.
考点: 1.抛物线与x轴的交点;2.二次函数与不等式(组).
练习册系列答案
相关题目