题目内容
【题目】由6根钢管首尾顺次铰接而成六边形钢架ABCDEF,相邻两钢管可以转动.已知各钢管的长度为AB=DE=1米,BC=CD=EF=FA=2米.(铰接点长度忽略不计)
(1)转动钢管得到三角形钢架,如图1,则点A,E之间的距离是 米.
(2)转动钢管得到如图2所示的六边形钢架,有∠A=∠B=∠C=∠D=120°,现用三根钢条连接顶点使该钢架不能活动,则所用三根钢条总长度的最小值是 米.
【答案】(1);(2).
【解析】
试题分析:(1)如图1中,∵FB=DF,FA=FE,∴∠FAE=∠FEA,∠B=∠D,∴∠FAE=∠B,∴AE∥BD,∴,∴,∴AE=,故答案为:;
(2)如图中,作BN⊥FA于N,延长AB、DC交于点M,连接BD、AD、BF、CF.
在RT△BFN中,∵∠BNF=90°,BN=,FN=AN+AF==,∴BF==,同理得到AC=DF=,∵∠ABC=∠BCD=120°,∴∠MBC=∠MCB=60°,∴∠M=60°,∴CM=BC=BM,∵∠M+∠MAF=180°,∴AF∥DM,∵AF=CM,∴四边形AMCF是平行四边形,∴CF=AM=3,∵∠BCD=∠CBD+∠CDB=60°,∠CBD=∠CDB,∴∠CBD=∠CDB=30°,∵∠M=60°,∴∠MBD=90°,∴BD==,同理BE=,∵<3<,∴用三根钢条连接顶点使该钢架不能活动,∴连接AC、BF、DF即可,∴所用三根钢条总长度的最小值,故答案为:.
【题目】为了了解光明中学学生平均每周的体育锻炼时间,小敏在校内随机调查了50名同学,统计并绘制了频数分布表(如下表)和扇形统计图(如图).
组别 | 锻炼时间(h/周) | 频数 |
A | 1.5≤t<3 | 1 |
B | 3≤t<4.5 | 2 |
C | 4.5≤t<6 | a |
D | 6≤t<7.5 | 20 |
E | 7.5≤t<9 | 15 |
F | t≥9 | b |
(1)a= , b= .
(2)在扇形统计图中,D组所占圆心角的度数为 .
(3)全校共有3000名学生,请你帮助小敏估计该校平均每周体育锻炼时间不少于6h的学生约有多少人?