题目内容

【题目】如图,在Rt△ABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.AO交⊙O于点E,延长AO交⊙O于点D,tanD=

(1)求 的值.
(2)设⊙O的半径为3,求AB的长.

【答案】
(1)解:如图,过点O作OF⊥AB于点F,

∵AO平分∠CAB,

OC⊥AC,OF⊥AB,

∴OC=OF,

∴AB是⊙O的切线;

连接CE,

∵ED是⊙O的直径,

∴∠ECD=90°,

∴∠ECO+∠OCD=90°,

∵∠ACB=90°,

∴∠ACE+∠ECO=90°,

∴∠ACE=∠OCD,

∵OC=OD,

∴∠OCD=∠ODC,

∴∠ACE=∠ODC,

∵∠CAE=∠CAE,

∴△ACE∽△ADC,

=

∵tan∠D=

=

=


(2)解:

由(1)可知: =

∴设AE=x,AC=2x,

∵△ACE∽△ADC,

=

∴AC2=AEAD,

∴(2x)2=x(x+6),

解得:x=2或x=0(不合题意,舍去),

∴AE=2,AC=4,

由(1)可知:AC=AF=4,

∠OFB=∠ACB=90°,

∵∠B=∠B,

∴△OFB∽△ACB,

=

设BF=a,

∴BC=

∴BO=BC﹣OC= ﹣3,

在Rt△BOF中,

BO2=OF2+BF2

∴( ﹣3)2=32+a2

∴解得:a= 或a=0(不合题意,舍去),

∴AB=AF+BF=


【解析】(1)可把∠D放在直角三角形中,须连接CE,OF,证出△ACE∽△ADC,利用对应边成比例转化;(2)利用(1)的结果求出AE、AC,证出△OFB∽△ACB,列出比例式,利用勾股定理建立方程,求出AB.
【考点精析】掌握圆周角定理和相似三角形的判定与性质是解答本题的根本,需要知道顶点在圆心上的角叫做圆心角;顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网